
Generating Empirically Optimized Composed
Matrix Kernels from MATLAB Prototypes

Boyana Norris?1, Albert Hartono2, Elizabeth Jessup??3, and Jeremy Siek3

1 Argonne National Laboratory
norris@mcs.anl.gov

2 Ohio State University
hartonoa@cse.ohio-state.edu

3 University of Colorado at Boulder
{elizabeth.jessup,jeremy.siek}@colorado.edu

Abstract. The development of optimized codes is time-consuming and
requires extensive architecture, compiler, and language expertise, there-
fore, computational scientists are often forced to choose between invest-
ing considerable time in tuning code or accepting lower performance. In
this paper, we describe the first steps toward a fully automated system
for the optimization of the matrix algebra kernels that are a founda-
tional part of many scientific applications. To generate highly optimized
code from a high-level MATLAB prototype, we define a three-step ap-
proach. To begin, we have developed a compiler that converts a MAT-
LAB script into simple C code. We then use the polyhedral optimiza-
tion system PLuTo to optimize that code for coarse-grained parallelism
and locality simultaneously. Finally, we annotate the resulting code with
performance-tuning directives and use the empirical performance-tuning
system Orio to generate many tuned versions of the same operation us-
ing different optimization techniques, such as loop unrolling and mem-
ory alignment. Orio performs an automated empirical search to select
the best among the multiple optimized code variants. We discuss perfor-
mance results on two architectures.
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1 Introduction

The development of high-performance numerical codes is challenging because
performance is determined by complex interactions among the algorithm, data
structure, programming language, compiler, and computer architecture. Scien-
tists seeking high performance are thus required to master advanced concepts
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in computer science and carry out intricate programming tasks in addition to
managing the scientific content of their work. They must either invest substan-
tial time in tuning their software or accept low performance. In either case, the
productivity of the scientists degrades.

Historically, the research community has pursued two separate paths toward
the goal of making software run at near-peak levels. The first path builds on
research into compilers and their associated technologies. One of the main goals
of compilation research is to take an arbitrary code as input and produce optimal
code as output for a given language and hardware platform. The success of this
approach has been limited by a number of factors: (i) optimal mappings between
the computation graph and the hardware are expensive (often NP-complete) to
compute; (ii) potentially useful information that could aid optimization cannot
be represented in general-purpose languages such as C and Fortran; and (iii) user
control of compiler optimizations is limited and varies from compiler to compiler,
and (iv) apart from differences in execution time, it is difficult to evaluate the
effectiveness of different compiler optimizations.

When compilers alone cannot achieve the desired performance, another path
to performance optimization is to identify kernel routines that dominate the exe-
cution time of a wide variety of applications. An example is the high-performance
Basic Linear Algebra Subprograms (BLAS) libraries [1] produced by a combina-
tion of hardware vendors, independent software vendors, and researchers. Devel-
opers who write their codes calling these routines can achieve high performance
across all supported architectures, but are also subject to the limitations of the
library (e.g., portability and the types of operations available).

This paper describes a combination of the two approaches designed to over-
come some of their shortcomings. We describe our initial efforts toward the
development of software infrastructure for generating automatically tuned li-
braries for matrix algebra computations. In Section 2 we briefly discuss relevant
prior and current research efforts. In Section 3 we describe our MATLAB-to-C
compiler and the empirical performance tuning system Orio and its use in con-
junction with the PLuTo tool suite to generate and empirically evaluate many
tuned versions of the C code generated by the MATLAB compiler. In Section 4
we provide performance results on two architectures. In Section 5 we conclude
with a brief summary.

2 Background

Existing optimizing MATLAB [2] compilers, such as the MaJIC MATLAB com-
piler [3], include limited local optimizations for matrix expressions but do not
perform optimizations such as loop fusion across multiple operations as we do
with the tools described in this paper. The telescoping languages project [4] uses
techniques such as strength reduction, vectorization, and procedure specializa-
tion to optimize MATLAB scripts but does not generate reusable optimized
linear algebra routines as described in this paper.
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The most common approach to tuning numerical codes is for an expert to
transform the source manually, unrolling loops, blocking for multiple levels of
cache, and inserting prefetch instructions. The pitfalls of this approach are well
understood [5]: It requires a significant amount of time and effort. Optimiz-
ing code for one particular platform may in fact make it less efficient on other
platforms and often makes it complex and hard to understand or maintain. An
alternative is the use of tuned libraries of key numerical algorithms, for example,
BLAS [6] and LAPACK [7] for dense linear algebra.

Specialized code generators circumvent the high costs of manual code gener-
ation. They include tools for basic dense linear algebra operations (ATLAS [8],
PhiPAC [9]), and sparse linear algebra (OSKI [10]) among others. While these
libraries target a specific kernel, our approach aims at enabling the definition
of arbitrary kernels involving dense matrix linear algebra. It is often impossible
to predict precisely the performance of code on modern computer architectures.
Thus, many of these specialized code generators exploit search strategies to iden-
tify the best (or nearly best) code for a particular choice of problem parameters
and machine. Most existing autotuning tools are not general but focus on a
specific domain or algorithm.

A number of source or binary transformation tools for general performance-
improving optimizations exist. LoopTool [11], developed at Rice University, sup-
ports annotation-based loop fusion, unroll-and-jam, skewing, and tiling. A rel-
atively new tool, POET [12], also supports a number of loop transformations.
POET offers a complex template-based syntax for defining transformations in a
language-independent manner (but currently only C++ is supported). PLuTo [13]
is a source-to-source transformation tool for optimizing sequences of nested
loops. PLuTo employs a polyhedral model of nested loops, where the dynamic in-
stance (iteration) of each statement is viewed as an integer point in a well-defined
space, called the statement’s polyhedron. Combined with a characterization of
data dependences, this representation allows the construction of mathematically
correct complex loop transformations. The transformations target both improved
cache locality and parallelism.

3 Optimizing Composed BLAS Operations

Codes based on matrix algebra are generally constructed as a sequence of calls to
the BLAS and similar sparse matrix libraries [14]. Writing programs in this way
promotes readability and maintainability but can be costly in terms of memory
efficiency. Specifically, the retrieval of a large-order matrix at each routine call
can profoundly affect performance even when highly tuned implementations of
the BLAS (e.g., [15]) are used.

A much more efficient approach is to call a single, specialized routine that
performs multiple operations, rather than to make successive calls to separate
BLAS routines (e.g., see [16]). Single routines that carry out more than one
linear algebra operation are known as composed BLAS. As an example, consider
the pair of matrix-vector products q = Ap, s = AT r, where A is a matrix and
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p, q, r, and s are vectors, that represent the computational bottlenecks of the
biconjugate gradient method (BiCG) [17] and of the GEMVER kernel examined
in Section 3.1. These two operations can be implemented as a pair of calls to the
BLAS routine GEMV, or they can be rewritten as a composed BLAS consisting of
a doubly nested loop encompassing both matrix-vector products. In the former
case, the matrix A is accessed twice, whereas in the latter it is accessed only
once. Our preliminary results in prior research and in the work reported in
this paper indicate that loop fusion leads to a routine that delivers significantly
better performance than does a pair of calls to the best optimized BLAS GEMV
routines for large matrix orders. Composed routines are the focus of the work
presented here, but much of what we discuss generalizes to a much broader array
of computations.

To generate highly optimized code from a MATLAB prototype of the com-
posed BLAS operation, we follow a three-step approach, illustrated in Figure 1.

Fig. 1. Code generation and tuning process.

To begin, we have devel-
oped a compiler that con-
verts a MATLAB script
into simple C code [18]. Af-
ter generating the C code
from the high-level MAT-
LAB prototype, we (op-
tionally) use the source-
to-source automatic paral-
lelization tool PLuTo [13] to
optimize for coarse-grained
parallelism and locality si-
multaneously. Using the re-
sults of the PLuTo analysis,
we insert annotations into
the C code, which are then
processed by our extensible
annotation system Orio to generate many tuned versions of the same operation
using different optimization parameters. Orio then performs an empirical search
to select the best among the multiple optimized code variants.

In the remainder of this section we describe each of the tools developed by
the authors of this paper, namely, the MATLAB-to-C compiler [18] and the Orio
empirical tuning tool [19,20].

3.1 A MATLAB Compiler

Figure 2 gives an overview of the MATLAB-to-C compilation process [18]. The
MATLAB kernel specification is parsed into a high-level intermediate represen-
tation in the form of a dataflow graph, in which each node represents a param-
eter (e.g., a scalar, matrix, or vector variable) of the kernel or an operation.
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Fig. 2. MATLAB-to-C compiler.

This dataflow graph is then iteratively pro-
cessed until all of the implementation choices
have been made. The compilation process
consists of three phases – analysis, refine-
ment, and optimization – that are together
iterated until all of the implementation de-
cisions have been made. The graph is then
translated into C code.

Here we briefly describe the analysis, re-
finement, and optimization of the dataflow graph; these are discussed in more
detail in [18]. During the analysis phase, all types of intermediate nodes are com-
puted and assigned. The algorithm choice and storage format determination are
computed simultaneously. Consider, for example, the GEMVER kernel compu-
tation: A← A + u1v

T
1 + u2v

T
2 ; x← βAT y + z; w ← αAx. The multiplication of

u1 and vT
1 can be implemented by iterating over rows first or over columns first,

depending on how the result is used downstream in the dataflow graph. In this
case, the result is added to the outer product of u2 and vT

2 , so we still can choose
either option as long as we make the same choice for both outer products.

The information on implementation possibilities for basic linear algebra oper-
ations is not hard-coded in the compiler; rather, this data is stored in a database,
called the linear algebra database. This separation allows us to add new matrix
formats, operations, and basic linear algebra algorithms without changes to the
compiler algorithm.

The analysis algorithm makes implementation choices using the most-con-
strained-first strategy (also known as minimum remaining values) [21]. The com-
piler chooses the node with the fewest matching implementations (in the linear
algebra database) and assigns an algorithm name to the node. If there is more
than one match, the prototype compiler picks the first. This process is repeated
with all remaining nodes in the graph.

The refinement phase resolves the implementation for each operation node
in the graph into a subgraph defining the details of the chosen algorithm. Each
subgraph is an abstract representation of the loop that implements the given
operation that also contains an iteration strategy for traversing the elements of
the matrix or vector. In the optimization step, we apply conditional rewrite rules
to optimize the dataflow graph, for example merging two subgraphs when they
share a common operand. This rule is responsible for fusing the loops of the two
matrix-vector products in the GEMVER kernel. The final step performed by the
MATLAB compiler when the graph cannot be refined further is the generation of
C code. The generator outputs a C loop for each subgraph based on a topological
sort of the graph.

3.2 Orio

Orio [19, 20] is an empirical tuning tool that takes annotated C code as input,
generates multiple transformed versions of the annotated code, and empirically
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Fig. 3. Overview of the Orio empirical tuning process.

evaluates the performance of the generated codes, ultimately choosing the best-
performing version to use in production runs.

Figure 3 illustrates the tuning process implemented in Orio. The input to
Orio is C code containing semantic comments that describe both the computa-
tion and various performance-tuning directives. Orio first extracts all annota-
tion code regions by parsing the marked-up input code. Each annotated region
is then passed to code transformation module and code generator for potential
optimizations. Next the transformed C code with various incorporated opti-
mizations corresponding to the specified annotations is produced. The source-
to-source transformation system of Orio generates an optimized code version
for each distinct combination of performance parameter values. Each generated
code variant is then executed and its performance cost evaluated. After itera-
tively testing all code variants, the best-performing code is selected as the final
output of Orio. Because the search space of all possible optimized code variants
can be exponentially large, the search engine implements a number of search
heuristics (i.e., random, simplex, and simulated annealing) to effectively narrow
the search for near-optimal performance. The tuning specifications, written by
users in the form of annotations, contains information required for guiding the
transformation and tuning process.

Figure 4 shows an annotation example used by Orio to empirically optimize
VADD operation on Blue Gene/P. The annotations contain performance hints
that instruct Orio to perform memory alignment optimization, loop unrolling,
and multicore parallelization (using OpenMP). In addition to these simple opti-
mizations, Orio supports other transformations such as loop blocking, loop per-
mutation, scalar replacement, array copy optimization, and some architecture-
dependent optimizations. The right-hand side of Figure 4 shows separate tuning
specifications used for building and running executable tests, including perfor-
mance parameter values, execution environment details, input variable informa-
tion, and the search algorithm. Orio also supports parallel search when parallel
resources are available. In this example, the parallel Orio driver simultaneously
executes 64 code variants in the same parallel job. The commands used by Orio
to submit a parallel job and to query its status are also specified in the tuning
specifications. At present, users must create the tuning specifications manually.
When Orio is used in conjunction with compiler tools, such as the MATLAB
compiler described in this paper, it should eventually be possible to automati-
cally generate the tuning specifications.
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void vadd(int n, double *y, double *x1,
double *x2, double *x3) {

/*@ begin PerfTuning(
import spec vadd_tune_spec;

) @*/

register int i;

/*@ begin BGP_Align(y[],x1[],
x2[],x3[]) @*/

/*@ begin Loop(
transform Unroll(ufactor=UF,

parallelize=PAR)
for (i=0; i<=n-1; i++)

y[i] = x1[i] + x2[i] + x3[i];
) @*/

for (i=0; i<=n-1; i++)
y[i] = x1[i] + x2[i] + x3[i];

/*@ end @*/
/*@ end @*/
/*@ end @*/
}

spec vadd_tune_spec {
def build {
arg build_command = ’mpixlc -O3 -qstrict -lm’;
arg batch_command = ’qsub -n 64 -t 10’;
arg status_command = ’qstat’;
arg num_procs = 64;

}
def performance_params {
param UF[] = range(1,32);
param PAR[] = [True, False];

}
def input_params {
param N = [10,100,1000,10**4,10**5,10**6,10**7];

}
def input_vars {
decl int n = N;
decl double y[N] = 0;
decl double x1[N] = random;
decl double x2[N] = random;
decl double x3[N] = random;

}
def search {
arg algorithm = ’Exhaustive’;

}
}

Fig. 4. Orio example: Annotated C source code (left) and tuning specification
excerpt for the Blue Gene/P (right).

4 Experimental Results

We evaluated our approach by running experiments on an Intel Xeon worksta-
tion and the Blue Gene/P at Argonne. The Intel machine has dual quad-core
E5462 Xeon processors (8 cores total) running at 2.8 GHz (1600 MHz FSB) with
2 GB RAM, running Ubuntu 8.04. Intel C compiler (v10.1) was used with -O3
option (and -parallel/-openmp for automatic/manual parallelization, respec-
tively). Each node of the Blue Gene/P has four 850 MHz PowerPC 450 proces-
sors with a dual floating-point unit and 2 GB total memory per node, running
a proprietary operating system. On the Blue Gene/P, we used IBM XLC com-
piler (v9.0), with -O3 -qstrict -qarch=450d -qtune=450 -qhot options (and
-qsmp=auto/-qsmp=noauto for automatic/manual parallelization, respectively).

Table 1 lists the composed BLAS operations used in our experiments, along
with their input and output variables. Vectors are typeset in lowercase with an
overhead arrow. Scalars and matrices are represented as lowercase and uppercase
letters, respectively. A regular uppercase denotes a row matrix, whereas a bold
uppercase symbolizes a column matrix. The extended MATLAB expression that
corresponds to each operation can be seen in the last column of Table 1.

The performance results (in MFLOP/s) of tuning the VADD operation on the
Blue Gene/P are given in Figure 5(a). The “Base” label designates the C imple-
mentation generated by the MATLAB compiler. We also tested the performance
of an implementation that calls DAXPY twice using available BLAS libraries. Fi-
nally, we tuned the simple C loop version using Orio, with the performance
annotations previously shown in Figure 4. In this experiment, we measured the
performance for both the sequential and parallel scenarios. Even for a very sim-
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Table 1. Composed BLAS operations used in our experiments.

Name Input Output Operation

VADD −→w ,−→y ,−→z −→x −→x = −→w +−→y +−→z
ATAX A,−→x −→y −→y = A′ ∗ (A ∗ −→x )

GEMVER A,a,b, B, B = A +−→u1 ∗ −→v1
′ +−→u2 ∗ −→v2

′

−→u1,
−→u2,
−→v1 ,
−→v2 ,

−→x ,−→w −→x = b ∗ (B′ ∗ −→y ) +−→z
−→y ,−→z −→w = a ∗ (B ∗ −→x )

BiCG Kernel A,−→p ,−→r −→q ,−→s −→q = A ∗ −→p
−→s = A′ ∗ −→r

ple operation such as vector addition the compiler alone is unable to obtain the
same level of performance as the empirically tuned versions. Furthermore, as ex-
pected, the BLAS implementation does not exploit locality and thus performed
worse than the single-loop implementation.

The experiments of the remaining operations were performed on the mul-
ticore Intel Xeon. Included in these experiments are performance numbers for
six code variants: the C code generated by the MATLAB compiler (“C from
MATLAB”), three BLAS-based implementations that use Intel MKL, ATLAS,
and the default BLAS library on Ubuntu 8.04, and the sequential and parallel
code variants tuned by Orio (“Orio (Seq.)” and “Orio (Par.)”, respectively).

The Xeon performance results (in seconds) of ATAX are shown in Figure 5(b).
The Orio-tuned version that incorporates PLuTo-generated loop fusion optimiza-
tions and Orio parallelization directives achieves the best performance for most
problem sizes, outperforming the Intel MKL version by a factor of 2 to 5.7 and
the compiler-optimized C version by a factor of 4 to 7. The optimizations per-
formed by both Orio versions include scalar replacement, vectorization, and loop
unroll/jam.

Figure 5(c) shows the performance (in seconds) of the GEMVER operation
on the Xeon workstation. Here we used the same PLuTo and Orio optimizations
as for the ATAX example. Similarly, the parallel Orio version achieved the best
performance, although in this case the sequential Orio version performs almost
the same, suggesting that the compiler was not able to parallelize the code very
effectively. For this operation, substantial performance differences exist between
among the different BLAS versions, with the Intel MKL version achieving per-
formance close to that of the simple compiler code.

The performance (in seconds) for the BiCG kernel operation is shown in
Figure 5(d). For this operation, the PLuTo analysis did not result in perfor-
mance improvement. Thus we are showing the results obtained only through
Orio transformations, which included vectorization, scalar replacement, and loop
unroll/jam. Again the best performance was achieved by the parallel Orio ver-
sion, while all the BLAS versions performed worse than the compiler-optimized
C loop version.



Empirically Optimized Numerical Software from MATLAB 9

(a) VADD (b) ATAX

(c) GEMVER (d) BiCG Kernel

Fig. 5. Performance results for several composed BLAS operations.

5 Conclusions

We have described an approach to generating tuned linear algebra libraries from
high-level annotated MATLAB code that involves a suite of tools to (1) trans-
late the MATLAB code to C, (2) analyze the resulting loops and identify locality
and parallelism-enhancing optimizations using PLuTo, and (3) annotate the re-
sulting C code with syntactic performance directives and use Orio to generate
multiple optimized versions and empirically select the one with the best per-
formance. Preliminary results from experiments with several composed BLAS
operations show that the optimized code generated by this suite of tools sig-
nificantly outperforms the versions using tuned BLAS and aggressive compiler
optimizations.

The positive initial results from our approach to generating tuned linear
algebra routines motivate several future lines of investigation, including closer
integration between the tools handling the different steps of the process and
more automation at each step.
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